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Introduction 
 

On November 18, 2020, the drug maker Pfizer issued a press release summarizing 

its Phase 3 study of COVID-19 vaccine (Pfizer 2020b). The announcement 

received a flurry of media coverage (LaFraniere et al. 2020; Zimmer 2020), 

focusing on the 95% vaccine efficacy rate. Pfizer’s clinical trial involved 41,135 

volunteers; there were 170 confirmed cases of COVID-19, with 162 observed in 

the placebo group and 8 in the vaccine group. Based only on these numbers reported 

in the New York Times (Zimmer 2020), I wrote a pedagogic note for Numeracy to 

verify Pfizer’s claim of 95% vaccine efficacy rate and test its statistical significance 

(Wang 2021). I also used the method that students learn in a standard elementary 

statistics course to construct an approximate confidence interval of the efficacy rate, 

[92.1%, 98.5%], which was not given in the press release and news articles.   

Since the completion of the manuscript of Wang (2021) in early December 

2020, three leading COVID-19 vaccine developers (Pfizer-BioNTech, Moderna, 

and AstraZeneca-Oxford) published additional details about their clinical trials 

(Polack et al. 2020; Ramasamy et al. 2020; Baden et al. 2021). The US Food and 

Drug Administration (FDA) held meetings on December 10 and 17, 2020 to discuss 

Emergency Use Authorization of COVID-19 vaccines by Pfizer-BioNTech and 

Moderna. The FDA meeting videos and documents are open to the public, and a 

wealth of information is now available (FDA 2020b; FDA 2020c). Using a beta-

binomial model, Pfizer provided a confidence interval of [90.3%, 97.6%] for the 

vaccine efficacy rate, and using the Clopper and Pearson method the confidence 

interval is [90.0%, 97.9%]. The two intervals are similar, and in reasonable 

agreement with my simplified treatment based on a one-proportion z-test. 

To emphasize the need for confidence intervals, I often use the following 

example from Selvin (2004): in a particular state it was noted that more than half 

the women in prison for murder had killed their husbands, and less than a fifth of 

the men in prison for murder had killed their wives. Can we draw conclusions about 

male and female spousal relations? No. If only four women were convicted for 

murder and 660 men, the confidence interval associated with the women would be 

extremely wide and convey little information about the population parameter. 

The COVID-19 pandemic offers a realistic example to illustrate the importance 

of confidence intervals. The AstraZeneca-Oxford vaccine was described to be 

puzzling for scientists (Callaway 2020). Among people who received a lower dose 

followed by a standard dose, the efficacy rate is 90%. However, for participants 

who received two full doses, the efficacy rate is 62%. The results may appear to be 

confusing, but once we know that the first trial involved only 33 COVID-19 cases, 

3 in the vaccine group and 30 in the placebo group, we expect the confidence 

interval to be wide. Table 1 shows the raw counts of the numbers of COVID-19 

cases and participants in three drug makers’ clinical trials. Based on the company’s 
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publication (Ramasamy et al. 2020), confidence interval for the initial trial is 

[67.4%, 97.0%], which overlaps with that of the two-dose regimen, [41.0%, 

75.7%]. There is no statistically significant difference between these two reported 

AstraZeneca-Oxford vaccine efficacy rates, and speculation about what works 

better seems premature. 
 

Table 1 

Raw Data from Three Drug Makers’ Publications 

 Vaccine group 

No. cases/volunteers 

Placebo group 

No. cases/volunteers 

Pfizer all 8/17,411 162/17,511 

Pfizer age ≥ 65 years 1/3,848 19/3,880 

Moderna all 11/13,934 185/13,883 

AstraZeneca I 3/1,367 30/1,374 

AstraZeneca II 27/4,440 71/4,455 
AstraZeneca combined 30/5,807 101/5,829 

 

There are numerous ways to calculate confidence intervals (Newcombe 

1998). In addition to Pfizer’s methods mentioned above, Moderna employed a 

“stratified Cox proportional hazard model” and AstraZeneca utilized the “Poisson 

regression model with robust variance.” The technical details about these methods 

can dazzle even statisticians. This note focuses on the Bayesian approach, which is 

not typically covered in elementary statistics courses. Some statisticians and 

scientists argue that the standard classical technique has undesirable features, and 

a Bayesian method can be more attractive (Efron 1986; Cousins 1995). Kranz 

(2020) analyzed the FDA meeting video and claimed that the Pfizer scientist used 

the Bayesian credible interval to make the presentation more understandable for 

advisory committee members who are not statisticians.1 In some situations the 

frequentist and Bayesian confidence intervals are similar or even identical, and 

many textbooks have actually unknowingly used the Bayesian interpretation for the 

frequentist confidence intervals. For instance, the widely recommended Chicago 

Guide to Writing about Numbers (Miller 2004) contains the following example: 
 

Suppose our sample yields a mean math test score of 73.1 points with a standard error of 

2.1 points. The 95% confidence interval is 73.1 ± (2 × 2.1), so we can be 95% sure that 

the average test score for the population falls between 68.9 and 77.3 points.   
 

While this kind of statement can be found in many standard elementary 

textbooks, strictly speaking such an interpretation is not what Jerzy Neyman 

envisioned when he first introduced the concept of confidence intervals (Neyman 

1937). In the Appendix we will find the Clopper-Pearson confidence intervals and 

interpret them the classical way. 

We will use a simplified method based on Bayesian statistics to calculate 

confidence intervals for data shown in Table 1 to allow students to better understand 

                                                           
1 The phrase credible interval was coined to distinguish it from the classical confidence interval. In 

this note I use “confidence intervals” regardless of whether the construction is classical or Bayesian.  

2

Numeracy, Vol. 14 [2021], Iss. 2, Art. 7

https://scholarcommons.usf.edu/numeracy/vol14/iss2/art7
DOI: https://doi.org/10.5038/1936-4660.14.2.1390



www.manaraa.com

and communicate COVID-19 vaccine clinical trials. We refrain from cluttered 

notation commonly appearing in Bayesian literature, but keep the mathematics at 

the level of elementary statistics and elementary algebra to make this note 

accessible for most college students. We start with a discussion of the beta 

probability distribution, related to the polynomial and power functions. We then 

introduce Bayes’s rule and the beta-binomial model, and guide the readers to 

understand the theory through examples. After the preparatory work, we apply the 

method to analyze drug makers’ data to find the Bayesian confidence intervals.   

 

The Beta Distribution 
 

We first use the familiar normal distribution to recall probabilistic properties. A 

normal distribution is characterized by two parameters, the mean and the standard 

deviation. For the standard normal distribution, or the z-distribution, the mean is 0 

and standard deviation is 1. The probability density function (pdf) is  

 

𝑓(𝑧) =
1

√2 𝜋
𝑒−𝑧2/2 . 

 

The graph of this function is the famous bell curve, and the area under the curve 

between two z scores represents the probability. The middle 95% of the area under 

the z-distribution pdf is bounded by 𝑧 = −1.96 and 𝑧 = 1.96. In principle, the areas 

need to be found by integration, but students and practitioners use a table (in the 

old days) or a computer program to retrieve pre-calculated integral values for the 

standard normal distribution. 

The normal distribution is ubiquitous in an elementary statistics course and in 

real applications, but it is not the only type of probability distribution. An important 

class of distribution is the beta distribution, characterized by two parameters 𝛼 and 

𝛽. We use the notation 𝑥~Beta(𝛼, 𝛽) to denote that the random variable X follows 

a beta distribution. We use upper-case letters to refer to random variables, and 

lower-case letters to refer to their actual observed values. The probability density 

function is proportional to  

 

𝑝(𝑥) ∝ 𝑥𝛼−1(1 − 𝑥)𝛽−1 ,     0 ≤ 𝑥 ≤ 1 . 
 

The pdf of Beta(1, 1) is simply 1, a constant function. The pdf for Beta(2, 2) 

is  

 

𝑝(𝑥) = 6𝑥(1 − 𝑥) , 
 

3

Wang: Confidence Intervals of COVID-19 Vaccine Efficacy Rates

Published by Scholar Commons, 2021



www.manaraa.com

whose graph is a familiar opening downward parabola that students should know 

how to hand-sketch when learning elementary algebra. For other values of 𝛼 and 

𝛽, students can use a graphing device to plot the curves. Consider Beta(3, 19), the 

pdf is 

  

𝑝(𝑥) = 𝑘𝑥2(1 − 𝑥)18 , 
 

where k is a proportionality constant to ensure that the area under the curve between 

0 and 1 is unity, so that the area under the curve between two x values represents 

the probability.2 The graph is shown in Figure 1. We will use this distribution to 

model the hospitalization rate later.   

 

 
Figure 1. Probability density function of Beta(3, 19), which is proportional to 𝑥2(1 − 𝑥)18. The 

vertical line indicates the mean 3/22 = 0.136, which is the horizontal coordinate of the centroid of 

the shape.   

 

The mean of a continuous random variable following a certain probability 

distribution is the horizontal coordinate of the centroid of the area under the pdf. It 

is an elementary calculus problem to find the area and centroid of a shape, but we 

will not get into the details. For a Beta distribution, we cite the well-established 

results for the mean and variance (Gelman et al. 2013): 

 

                                                           
2 The proportionality constant k can be expressed as the beta function which is coded in standard 

mathematical and statistical software.   
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E(𝑋) =
𝛼

𝛼 + 𝛽
 ,     var(𝑋) =

𝛼 𝛽

(𝛼 + 𝛽)2 (𝛼 + 𝛽 + 1)
 . 

 

For example, for Beta(3, 19), the mean is 3/(3 + 19) = 0.136, which is 

indicated by the vertical line in Figure 1.   

 

Bayes’s Rule and the Beta-Binomial Model 
 

Bayes’s rule can be simply stated as “the posterior is proportional to the likelihood 

times the prior.” Formally, 

 

𝑝(𝜃|𝑦) ∝ 𝑝(𝜃)𝑝(𝑦|𝜃) , 
 

where 𝑝(𝜃|𝑦) and 𝑝(𝜃) are the posterior and prior distributions of the parameter 𝜃, 

respectively, and 𝑝(𝑦|𝜃) is the likelihood. The beta-binomial model uses the 

binomial sampling model as the likelihood, which is 

 

𝑝(𝑦|𝜃) = 𝐶𝑦
𝑛 𝜃𝑦  (1 − 𝜃)𝑛−𝑦 , 

 

where 𝐶𝑦
𝑛 is the binomial coefficient; see Wang (2021) for a discussion or any 

statistics textbooks for background information. For this likelihood, it is natural to 

use a beta distribution as the prior. As a result, the binomial model with beta prior 

distribution introduced in the preceding section has a posterior like this: 

 

𝑝(𝜃|𝑦) ∝ 𝜃𝑦+𝛼−1 (1 − 𝜃)𝑛−𝑦+𝛽−1 . 
 

The posterior is also a beta distribution, 𝜃|𝑦 ~ Beta(𝛼 + 𝑦, 𝛽 + 𝑛 − 𝑦), and 

the mean is 

 

E(𝜃|𝑦) =
𝛼 + 𝑦

𝛼 + 𝛽 + 𝑛
 . 

 

The posterior mean invariably lies between the sample proportion 𝑦/𝑛  and the 

prior mean 𝛼/(𝛼 + 𝛽) (Gelman et al. 2013). Before getting too abstract, we use 

some examples from Connor (2021) published in Numeracy to illustrate the idea.     
 

Hospitalization Rate 
 

Suppose 2 out of 20 young students in a classroom need hospitalization after being 

infected by COVID-19. Naively, we estimate the hospitalization rate for young 

students to be 2/20 = 0.1, but if 2 out 20 senior citizens who live in an assisted 

5
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living facility need hospitalization after being infected by COVID-19, it seems 

unreasonable to conclude that the hospitalization rate for senior citizens is also 

2/20 = 0.1, the same as students’ rate. The essence of Bayesian statistics is that 

one needs to incorporate previously established research into the current one, by 

including the previous knowledge as the prior distribution. If we use 

Beta(200, 100) as the prior for people who live in an assisted living facility 

(Connor 2021, Figure 3), then the posterior distribution is Beta(200 + 2, 100 +
18) and the Bayes-estimated hospitalization rate is  

 
200 + 2

200 + 100 + 20
= 0.631. 

 

On the other hand, if we use Beta(40, 4000) for students (Connor 2021, Figure 

4), then the posterior distribution is Beta(40 + 2, 4000 + 18) and the Bayes-

estimate rate is  

 
40 + 2

40 + 4000 + 20
= 0.010. 

 

The hospitalization rate for people who live in an assisted living facility is 

about 63 times higher than the rate for students using the Bayesian model, which 

makes more sense. In further details, the likelihood for both groups is based on the 

observation of 2 cases out of a sample of 20, and is modeled by this binomial 

distribution, 

 

𝑃(𝑦|𝜃) = 𝐶2
20 𝜃2(1 − 𝜃)18 , 

 

where 𝜃 is the unknown true rate. The prior Beta(200, 100) for people in an 

assisted living facility has the following pdf: 

 

𝑃(𝜃) = 𝑘𝜃199(1 − 𝜃)99 , 
 

where k is a proportionality constant. This prior distribution can be viewed as the 

following: previously 199 people with similar background required hospitalization, 

and 99 did not. The posterior is proportional to the likelihood multiplied by the 

prior, 

 

𝑃(𝜃|𝑦) ∝ 𝜃199+2(1 − 𝜃)99+18 , 
  

which is the pdf of the distribution Beta(200 + 2, 100 + 18). From this analysis, 

the posterior mean 0.631 is just the weighted mean of the prior rate 200/(200 +
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100) = 0.667 and the sample proportion 2/20 = 0.1. Similarly, the prior pdf for 

students is 

 

𝑃(𝜃) = 𝑘𝜃39(1 − 𝜃)3999 , 
 

and the posterior pdf is: 

 

𝑃(𝜃|𝑦) ∝ 𝜃39+2(1 − 𝜃)3999+18 . 
 

A nice feature of the Bayesian method is that we obtain a posterior probability 

density function for the true parameter 𝜃 as seen above, so that we can discuss the 

probability of the parameter. In the next section we will see how a Pfizer scientist 

used the distribution when communicating about the vaccine efficacy. 

In Figure 2, we show the prior and posterior probability density functions for 

two groups. We include the likelihood function in the same plot, but the likelihood 

function is not a probability density function. Note that 𝑃(𝑦|𝜃) = 𝐶2
20 𝜃2 (1 −

𝜃)18 is proportional to the pdf of Beta(3, 19). See also Figure 1. For people in an 

assisted living facility, we can see that the posterior mean 0.631 is between the prior 

mean 0.667 and the raw rate 0.1. This can be considered as the phenomenon 

“regression to the mean.” For students in a classroom, we make a similar 

observation that the posterior mean 0.010 is between the prior mean 40/(40 +
4000) = 0.0099 and the raw rate 0.1, although the data 2 out of 20 are dominated 

by the prior distribution and we can hardly distinguish the prior and posterior 

probability density functions from Figure 2. 

 

 
Figure 2. The dot-dashed curve is the prior, dashed curve is proportional to the likelihood, and the 

solid curve is the posterior, for people in an assisted living facility (left) and students in a classroom 

(right). The dashed curve for both plots is the same function as the curve in Figure 1 but shown in 

different scale. 
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Baseball Batting Average 
 

This real-life example is from Irizarry and Love (2015). José Iglesias is a 

professional baseball player. In April 2013, he made 9 hits out of 20 times at 

bat. The raw rate, called batting average, is 9/20 = 0.450. It is strikingly high, 

as no one has finished a season with an average of 0.400 since Ted Williams did it 

in 1941. Irizarry and Love calculated the batting averages for all players with more 

than 500 at bats during the previous three seasons, and found the mean to be 0.275 

and standard deviation 0.027. They used a normal distribution to compute the 

posterior distribution, but here we will use the beta-binomial model. From the 

records of the previous three seasons, we set the following equations to solve for 𝛼 

and 𝛽, 

 
𝛼

𝛼 + 𝛽
= 0.275 ,     

𝛼 𝛽

(𝛼 + 𝛽)2 (𝛼 + 𝛽 + 1)
= 0.0272. 

 

One can employ a computer algebra system such as Maple or Mathematica to 

solve this system of two equations with two unknowns to obtain 𝛼 = 74.935 and 

𝛽 = 197.556. With the prior distribution Beta(74.935, 197.556), the posterior 

distribution is Beta(74.935 + 9, 197.556 + 11), and the Bayes-estimated rate for 

Iglesias is  

 
74.935 + 9

74.935 + 197.556 + 20
= 0.287. 

 

The posterior distribution 

 

𝑃(𝜃|𝑦) ∝ 𝜃74.935−1+9(1 − 𝜃)197.556−1+11 

 

is shown in Figure 3, along with the prior and likelihood. The posterior pdf allows 

us to construct a Bayesian 95% confidence interval, denoted by [𝐿, 𝑈]. The lower 

bound is the value such that the area under the pdf between 0 and L is 0.025, and 

the upper bound is the value such that the area under the pdf between U and 1 is 

0.025. This is an elementary area problem that students learn in calculus, but many 

computer programs exist to perform numerical integration and locate the end 

points. Using the R command qbeta(c(0.025, 0.975), 74.935+9, 197.556+11), we 

obtain the 95% confidence interval [0.237, 0.340]. We conclude that based on José 

Iglesias’s performance in April 2013, there is a 95% probability that his true batting 

average is between 0.237 and 0.340. We can talk about the probability of the 

parameter (batting average), which we cannot do under the classical framework.    
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Figure 3. Left: The dot-dashed curve is the prior, dashed curve is proportional to the likelihood, and 

the solid curve is the posterior.  Right: The shaded area under the posterior pdf between the end 

points of the 95% confidence interval, [0.237, 0.340], is 0.95.   
 

The Bayes-estimated rate 0.287 turned out to be a more accurate prediction 

than the raw rate 0.45. From May to September, Iglesias had 97 hits out of 330, or 

a batting average of 0.293.3 The Bayesian prediction that he would not be as good 

the remainder of the season is another example of regression to the mean.   

 

Vaccine Efficacy Rates 
 

According to the FDA issued guidance, the vaccine efficacy rate should be at least 

50% to be considered a success, although the lower bound of the confidence 

interval can be as low as 30% (FDA 2020a), another reminder that confidence 

intervals are crucial. To ensure public trust, Pfizer, Moderna, and AstraZeneca 

agreed to make their full study protocols publicly available. Pfizer used the FDA 

recommendations to construct a minimally informative prior beta distribution for 

the Bayesian confidence interval (Pfizer 2020a), as we will describe below. 

From Pfizer’s protocol, we learn that the vaccine efficacy is defined as 

   

VE = 1 − IRR , 
 

where IRR is the ratio of COVID-19 illness rate in the vaccine group to the illness 

rate in the placebo group. The parameter 𝜃 is defined as 

 

𝜃 =
1 − VE

2 − VE
 . 

 

From the above definition, we can find a formula for VE in terms of 𝜃: 

                                                           
3 Reviewer 1 used a uniformly distributed prior (𝛼 = 1, 𝛽 = 1) to find the 95% confidence interval 

[0.257, 0.660], which also encompasses the true batting average. The empirical approach using other 

players’ data, however, provides a much more precise prediction.   
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VE =
1 − 2𝜃

1 − 𝜃
 . 

 

In Wang (2021), I used the New York Times description to express the efficacy 

rate as follows: 

 

VE = 1 −
𝑃(COVID+|vaccine)

𝑃(COVID+|placebo)
 , 

 

where 𝑃(COVID+|vaccine) and 𝑃(COVID+|placebo) are the number of cases in 

vaccine and placebo groups, respectively. Pfizer’s illness rate is measured in units 

of per 1000 person-years. Because we lack detailed temporal information of the 

clinical trial results, we make an approximation of equal surveillance time for the 

vaccine and control groups to simplify the calculation. With such an approximation 

and some algebraic operations, we obtain 

 

𝜃 =
𝑃(COVID+|vaccine)

𝑃(COVID+|vaccine) + 𝑃(COVID+|placebo)
 . 

 

The November 18, 2020 press release from Pfizer (Pfizer 2020b) and the New 

York Times article (Zimmer 2020) did not provide the number of volunteers in each 

group, so I resorted to Bayes’s rule to relate the inverse probabilities: 

 
𝑃(vaccine|COVID+)

𝑃(placebo|COVID+)
=

𝑃(vaccine)

𝑃(placebo)
×

𝑃(COVID+|vaccine)

𝑃(COVID+|placebo)
 . 

 

See Wang (2021) for further discussion. With the approximation 

𝑃(vaccine) = 𝑃(placebo),4 we can express 𝜃 as 

 

𝜃 =
𝑃(vaccine|COVID+)

𝑃(vaccine|COVID+) + 𝑃(placebo|COVID+)
 . 

 

This definition allows us to estimate the raw rate for Pfizer to be 𝜃 = 8/170, 

based on the observed 8 people in the vaccine group among 170 COVID-positive 

volunteers. We also have the vaccine efficacy rate as follows: 

 

                                                           
4 To analyze the clinical trial of the Sputnik V vaccine in Russia, which involved 14,964 volunteers 

in the vaccine group and 4,902 people in the placebo group (Logunov et al. 2021), we have 

developed a more general formulism and will present it in a future publication.       
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VE =
1 − 2 ×

8
170

1 −
8

170

=
154

162
= 1 −

8

162
= 0.951. 

 

I show extra steps in arithmetic so that the reader can relate to my earlier treatment 

(Wang 2021).   

To find the Bayesian confidence interval, Pfizer constructed a minimally 

informative prior. An uninformative prior is a constant function, or Beta(1, 1). 

According to Pfizer’s protocol (Pfizer 2020a), they set the prior VE to have a mean 

of 30%, the minimal requirement from the FDA guidance, and at this rate 𝜃 = (1 −
3/10)/(2 − 3/10) = 7/17 = 0.4118. Recall that for a beta distribution, the mean 

is 𝛼/(𝛼 + 𝛽). Let us keep 𝛽 = 1, and we can solve for 𝛼: 

 
𝛼

𝛼 + 1
=

7

17
 ,     𝛼 =

7

10
 . 

 

This formula is the basis for Pfizer’s prior, Beta(0.700102, 1). The extra digits in 

Pfizer 𝛼 is due to rounding error and seems superfluous. 

We use the binomial sampling model for the likelihood. From the observed 8 

cases in the vaccine group and 162 cases in the placebo group, 

 

𝑃(𝑦|𝜃) = 𝐶8
170 𝜃8(1 − 𝜃)162 . 

 

The pdf for Beta(7/10, 1) is 

 

𝑃(𝜃) = 𝑘𝜃7/10−1(1 − 𝜃)1−1 = 𝑘𝜃−3/10 , 
 

where k is a proportional constant. The posterior pdf is 

 

𝑃(𝜃|𝑦) ∝ 𝜃7/10−1+8(1 − 𝜃)162 , 
  

which is the pdf of Beta(7/10 + 8, 1 + 162). See Figure 4 for the prior and 

posterior probability density functions, together with the likelihood. The Bayes-

estimated rate is 

 

𝜃 =

7
10 + 8

7
10 + 1 + 170

= 0.0501,     VE =
1 − 2 × 0.0501

1 − 0.0501
= 0.947. 
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Figure 4. Left: The dot-dashed curve is the prior, dashed curve is proportional to the likelihood, and 

the solid curve is the posterior.  Right: The shaded area under the posterior pdf of VE between the 

end points of the 95% confidence interval, [0.903, 0.976], is 0.95.   
 

Because the prior is minimally informative, the posterior rate is not too 

different from the raw rate. Unlike examples in the preceding section, here the data 

dominate the prior distribution. From the posterior distribution, we can use the R 

command qbeta(c(0.025, 0.975), 7/10+8, 1+162) to solve the area problem to find 

the 95% confidence interval for 𝜃 to be [0.0232, 0.0880], and the corresponding 

VE confidence interval [90.3%, 97.6%]. This is identical to the confidence interval 

in the briefing document that Pfizer submitted to the FDA for the December 10, 

2020 meeting. Pfizer scientist Dr. William Gruber said the following during the 

Advisory Committee meeting (FDA 2020b). 
 

There’s 95 percent probability that efficacy falls in the intervals shown; meaning, that over 

97.5 percent likelihood that the efficacy is greater than 90 percent. Likewise, the 

probability that vaccine efficacy is at least greater than 30 percent greatly exceeds FDA 

COVID-19 vaccine guidance.   
 

Dr. Gruber’s testimony is an example that one can talk about the probability of the 

true parameter, in this case vaccine efficacy rate, under the Bayesian framework. 

From Pfizer’s document, we find that the 65-and-older subgroup has one case 

in the vaccine group and 19 in the placebo group (see Table 1). We expect a wider 

confidence interval for this age group. Similar to the above procedure, the posterior 

distribution is Beta(7/10 + 1, 1 + 19). Below, we show how to use R to find the 

95% confidence interval for 𝜃, [0.00765, 0.219], and the corresponding end points 

of the confidence interval for VE, [71.9%, 99.2%].5 We can say that there is a 95% 

probability that the vaccine efficacy rate is between 71.9% and 99.2% for people 

of age 65 and over, based on the data.    

   

                                                           
5 Reviewer 2 noticed that the Bayesian confidence interval [71.9%, 99.2%] is slightly different from 

the Clopper-Pearson confidence interval [66.7%, 99.9%] in Pfizer’s document submitted to the 

FDA. In general, the Bayesian confidence interval is narrower than the classical one. Additionally, 

our simplified treatment did not take the minor difference in surveillance time into account.   
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> (theta <- qbeta(c(0.025, 0.975), 7/10+1, 1+19)) 
[1] 0.007646717 0.219527315 
> (VE <- (1-2*theta)/(1-theta)) 
[1] 0.9922944 0.7187252 
> curve(dbeta(x, 7/10+1, 1+19))   #posterior 
> curve(dbeta(x, 7/10, 1), lty = 4, add = TRUE) #prior  
> curve(dbeta(x, 2, 20), lty = 2,add = TRUE)  #likelihood  

 
 

The R output of the graph is shown in Figure 5. We again point out that the 

likelihood, in this case 𝑃(𝑦|𝜃) = 𝐶1
20 𝜃1 (1 − 𝜃)19, is not a probability density 

function. This function is proportional to the pdf of Beta(2, 20), and we use it to 

show the relative magnitude of the likelihood. 

 
Figure 5.  In the R graphic output, the dot-dashed curve is the prior, dashed curve is proportional to 

the likelihood, and the solid curve is the posterior.       

 

Table 2 summarizes the confidence intervals of the data in Table 1 using the 

minimally informative prior Beta(7/10, 1). They are in good agreement with the 

published ones, which were based on classical or nonparametric methods (except 

for the group Pfizer all). Although the values are similar, the Bayesian and classical 

interpretations of confidence intervals are very different. See above for a Bayesian 

interpretation, and the Appendix for the classical interpretation.   
 

Table 2 

Comparison of VE Confidence Intervals % 

 Based on this work Published values 

Pfizer all [90.3, 97.6] [90.3, 97.6] 

Pfizer age ≥ 65 years [71.9, 99.2] [66.7, 99.9] 

Moderna all [89.4, 96.8] [89.3, 96.8] 

AstraZeneca I [70.7, 97.0] [67.4, 97.0] 

AstraZeneca II [41.5, 75.8] [40.0, 76.5] 

AstraZeneca combined [55.8, 80.4] [54.8, 80.6] 

 

As mentioned in the Introduction, AstraZeneca-Oxford reported a vaccine 

efficacy rate of 90.0% for volunteers who received a lower amount then the full 
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amount in the second dose, and 62.1% for volunteers who received two full doses. 

The company combined the data, and claimed an overall 70.4% efficacy rate. Our 

calculated confidence interval for the combined data is narrower than the 

confidence intervals of individual trials, as we would expect it. 

Although the AstraZeneca-Oxford vaccine’s efficacy rate is less impressive 

than that of Pfizer and Moderna, it can still make a significant impact on public 

health. Imagine two otherwise identical communities, but one is vaccinated and the 

other not. Even if the efficacy rate is only 70%, for every 100 people who become 

infected by COVID-19 in the unvaccinated community, there will be on average 30 

sick people in the vaccinated community. Furthermore, the Bayesian model gives 

the probability of every possible vaccine rate, and public health professionals may 

use decision theory to allocate medical resources.       

 

Concluding Remarks 
 

Under the Bayesian framework, one estimates a parameter based on the observed 

data and obtains a posterior probability density function for the parameter. This 

distribution allows one to talk about the probability of the parameter, which is often 

more natural when communicating uncertainty. Specifically, we can state that there 

is a 95% probability that Pfizer’s vaccine efficacy rate is between 90.3% and 

97.6%, based on the clinical trial data. We have presented a simplified method to 

analyze vaccine data based on Bayesian statistics. The posterior probability 

distribution in a beta-binomial model is an elementary polynomial or power 

function that students with basic algebra skills are familiar with. The explicit 

expression for the probability of the unknown parameter can be graphed, and 

students can use it to communicate confidence intervals more flexibly. With the 

minimally informative prior, we found that the Bayesian confidence intervals are 

similar to classical ones reported in medical literature. One can recast a classical 

confidence interval into a Bayesian one using our method, and speak about the 

probability of vaccine efficacy rates like what the Pfizer scientist did during the 

FDA meeting.    
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Appendix 
 

In Pfizer’s briefing document submitted to the FDA for the December 10, 2020 

meeting, two methods are mentioned in the footnotes, the beta-binomial model and 

the Clopper and Pearson method. Among 170 volunteers who became infected by 

COVID-19, 8 were from the vaccine group, and 162 from the placebo group. Below 

is the R code that reproduces Pfizer’s reported Clopper-Pearson confidence interval 

for 𝜃, [0.0205, 0.0906]. Then we use 𝜃 to compute the confidence interval for VE, 

[90.0%, 97.9%]. 

 
> testall <- binom.test(8, 8+162) 
> (theta <- testall$conf.int) 
[1] 0.02053273 0.09061668 
attr(,"conf.level") 
[1] 0.95 
> (VE <- (1-2*theta)/(1-theta)) 
[1] 0.9790368 0.9003537 
  

The Clopper-Pearson interval is commonly referred to as the “exact confidence 

interval.” Let us decipher the meaning of R’s output. For the binomial distribution, 

the probability mass function is 

 

𝑝(𝑦|𝜃) = 𝐶𝑦
𝑛 𝜃𝑦 (1 − 𝜃)𝑛−𝑦 

   

(see the main text). Let the 95% confidence interval of 𝜃 be [𝐿, 𝑈]. To find U for 

the observation 𝑦 = 8 out of 𝑛 = 170, we need to solve the following equation for 

𝜃. See Figure A.1. 

 

∑ 𝐶𝑘
170𝜃𝑘(1 − 𝜃)170−𝑘

8

𝑘=0

= 0.025. 

   

There are algorithms to solve this equation, and below we use R to verify that when 

𝜃 = 0.0906 the above equation is satisfied.   

 
> plot(0:30, dbinom(0:30, 170, 0.09061668), type = "h") 
> sum(dbinom(0:8, 170, 0.09061668)) 
[1] 0.025 
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Figure A.1. Classical solutions for the construction of the 95% confidence interval.    

 

Similarly, to find L we solve the following equation: 

 

∑ 𝐶𝑘
170𝜃𝑘(1 − 𝜃)170−𝑘

170

𝑘=8

= 0.025. 

 

Below we verify that when 𝜃 = 0.0205, the equation is satisfied. 

 
plot(0:30, dbinom(0:30, 170, 0.02053273), type = "h") 
> sum(dbinom(8:170, 170, 0.02053273)) 
[1] 0.02500001 

 
 

If we repeat the clinical trial, we may get a different y, which corresponds to a 

different confidence interval. The classical construction guarantees that in the limit 

of many repeated trials, 95% of the confidence intervals contain the unknown true 

value 𝜃. The classical confidence interval reflects the relative frequency with which 

the statement “𝜃 is in the interval [𝐿, 𝑈]” is a true statement (Cousins 1995). Robert 

D. Cousins claimed that many people do not think about the classical confidence 

intervals this way, and wrote a paper titled “Why Isn’t Every Physicist a Bayesian?” 

(Cousin 1995), in the spirit of Brad Efron’s article “Why Isn’t Everyone a 

Bayesian?” (Efron 1986), to demonstrate the flexibility of the Bayesian method. 

19

Wang: Confidence Intervals of COVID-19 Vaccine Efficacy Rates

Published by Scholar Commons, 2021


	Confidence Intervals of COVID-19 Vaccine Efficacy Rates
	Recommended Citation

	Confidence Intervals of COVID-19 Vaccine Efficacy Rates
	Abstract
	Keywords
	Creative Commons License
	Cover Page Footnote

	tmp.1620143000.pdf.HTHu8

